Chemical Monthly

© Springer-Verlag *1995* Printed in Austria

Synthesis and Thermal Decomposition of 3-Aroyl-4-aryl-2-pyrazolines #

A. L6vai

Department of Organic Chemistry, Kossuth Lajos University, H-4010 Debrecen, Hungary

Summary. 3-Aroyl-4-aryl-2-pyrazolines (21-40) have been synthesized by the reaction of α . β unsaturated ketones (1-20) with diazomethane. These 2-pyrazolines gave β -methyl- α , β -unsaturated ketones $(41-46)$ on thermal denitrogenation.

Keywords. 1,3-Dipolar cycloaddition; β -Methyl- α , β -unsaturated ketones; 2-Pyrazolines; α , β -Unsaturated ketones.

Darstellung und thermische Zersetzung yon 3-Aroyl-4-aryl-2-pyrazolinen

Zusammenfassung. Die Umsetzung der α , β -ungesättigten Ketone 1–20 mit Diazomethan lieferte die 3-Aroyl-4-aryl-2-pyrazoline 21–40. Durch thermische Stickstoffabspaltung entstanden die β -Methyl- α , β -ungesättigten Ketone 41-46.

Introduction

Synthesis of pyrazolines by the reaction of diazoalkanes with α, β -unsaturated carboxylic acid derivatives is well established in the literature $[1-4]$. However, concerning the reaction of α , β -unsaturated ketones and diazomethane, several conflicting data have been published. It has been described that the reaction of chalcone with diazomethane affords 3-benzoyl-4-phenyl-l-pyrazoline (type A in Scheme 2) as a primary product which is converted into 3-benzoyl-4-phenyl-2 pyrazoline (type B in Scheme 2) on gentle heating [5]. Later, *Ghate et al.* [6] assumed that this reaction afforded 4-benzoyl-3-phenyl-l-pyrazoline (type C in Scheme 2), but no spectral data were provided to corroborate the supposed structure of the product. The reaction of substituted chalcones with diazomethane was subsequently studied by *Sayed* and *Kjosen* [7], but - maybe as a consequence of the misinterpretation of the 1 H NMR spectra $-$ 5-benzoyl-4-phenyl-2-pyrazolines were reported as the products. On the other hand, the preparation of 4-aryl-3-(2-furoyl)- 2-pyrazolines, starting from furyl analogues of chalcones without the isolation or detection of the appropriate 1-pyrazoline isomers, has been published [8]. The 1,3-dipolar cycloaddition of exocyclic α , β -unsaturated ketones with diazomethane

[#] Dedicated to Prof. Dr. *F. Sauter* on the occasion of his 65th birthday

has also been investigated in detail $[9-14]$. We have found that the reaction of 3-arylidenechromanones, -flavanones, -1-thiochromanones,-1-thioflavanones, 2 arylidene-l-indanones, and -1-tetralones afforded only those regioisomers of spiro-1-pyrazolines where the methylene group is connected to the β carbon atom of the respective α, β -unsaturated ketone [10-12]. The assumption that the reaction of some 3-arylideneflavanones and diazomethane yielded such spiro-2-pyrazolines in which the methylene moiety of the diazomethane was connected to the α carbon [13, 14] certainly results from a misinterpretation of the ¹H NMR spectra or from the neglection of other spectroscopic measurements necessary for the structure elucidation. These compounds should actually be spiro-2-pyrazolines obtained by the isomerization of the other regioisomer spiro-l-pyrazoline where the methylene group is connected to the β carbon atom as in our cases [10-12] caused by methanol or impurities present. We have detected that spiro-1-pyrazolines obtained from our above mentioned exocyclic α , β -unsaturated ketones can easily be isomerized into the corresponding spiro-2-pyrazolines on treatment with acid $[11, 12]$. Based on all these results it appears that, although there are quite a lot of experimental data published in the chemical literature, several aspects of the reaction of α . β unsaturated ketones with diazoalkanes should be reinvestigated or investigated by using newer substrates.

Results and Discussion

Trying to verify the correctness of the conflicting literature data discussed above, we formerly had reinvestigated the 1,3-dipolar cycloaddition of chalcones with diazomethane [15]; the structures of the reaction products have been elucidated by UV, IR, ¹H and ¹³C NMR spectroscopy. These detailed spectroscopic studies unequivocally proved that the isolated reaction product was 3-aroyl-4-aryl-2 pyrazoline in each case. If the reaction progress was monitored by thin-layer chromatography (TLC), a new product (possibly the respective 1-pyrazoline isomer) could be detected which disappeared by spontaneous rearrangement into 2 pyrazoline when isolated as homogeneous single substance by removal of the solvent under reduced pressure. Thus, this reaction of chalcones is regioselective, providing 3-aroyl-4-aryl-2-pyrazolines as the only isolable products irrespective of the substituents of both aromatic rings.

In continuation of our previous study $[15]$, a series of chalcones $(1-20)$ were allowed to react with diazomethane in a mixture of anhydrous CH_2Cl_2 and diethyl ether at *ca.* 0° C. 3-Aroyl-4-aryl-2-pyrazolines **21-40** have been obtained as homogeneous products (Scheme 1), the structures of which have been elucidated by means of spectroscopic measurements *(vide infra).*

The reaction of α , β -unsaturated ketones 1-20 with diazomethane can lead to two kinds of 1-pyrazolines (types A and C in Scheme 2) which then can be isomerized into the appropriate 2-pyrazolines (types B and D in Scheme 2).

In the ¹H NMR spectra of compounds measured either in $CDCl₃$ or in *DMSO-d₆*, three protons gave a very similar ABX spin system. A triplet at 4.10-4.20 ppm can be assigned to the hydrogen atom connected to C-4. The chemical shifts of the two doublet-doublet signals of two other protons depend on the deshielding effect of the aryl group at position 4 (cf. Table 2), but unequivocally prove the presence of a CH₂ group. The measured geminal coupling constants were 11-12 Hz, whereas the vicinal ones amounted to 10-11 Hz and 5.5-6.0 Hz, respectively.

3-Aroyl-4-aryl-2-pyrazolines 1247

Scheme 1

1, 21, 41; $Ar^1 =$ phenyl, $Ar^2 = 1$ -naphthyl; 2, 22; $Ar^1 = 3$ -bromophenyl, $Ar^2 = 2$ -naphthyl; 3, 23: $Ar^1 = 4$ -methoxyphenyl, $Ar^2 = 9$ -anthracenyl; 4, 24: Ar¹ = 4-bromophenyl, Ar² = 9-anthracenyl; 5, 25: $Ar^1 = 2$ -furyl, $Ar^2 = 2$ -naphthyl; 6, 26, 42: $Ar^1 = 1$ -naphthyl, $Ar^2 =$ phenyl; 7, 27: $Ar^1 = 1$ -naphthyl, $Ar^2 = 4$ -chlorophenyl; 8, 28: $Ar^1 = 1$ -naphthyl, $Ar^2 = 9$ -anthracenyl; 9, 29: $Ar^1 = 1$ -naphthyl, $Ar^2 = 3$ chromonyl; 10, 30, 43: Ar¹ = 2-naphthyl, Ar² = phenyl; 11, 31: Ar¹ = 2-naphthyl, Ar² = 4-methoxyphenyl; 12, 32: $Ar^1 = 2$ -naphthyl, $Ar^2 = 4$ -chlorophenyl; 13, 33: $Ar^1 = 2$ -naphthyl, $Ar^2 = 3$ -chromonyl; 14, 34, 44: $Ar^1 = 2$ -phenanthrenyl, $Ar^2 =$ phenyl; 15, 35: $Ar^1 = 3$ -phenanthrenyl, $Ar^2 = 4$ -chlorophenyl; 16, 36: $Ar^1 = 3$ -phenanthrenyl, $Ar^2 = 2.4$ -dichlorophenyl; 17, 37, 45: $Ar^1 = 3$ -phenanthrenyl, $Ar^2 = 9$ anthracenyl; 18, 38: $Ar^1 = 9$ -phenanthrenyl, Ar^2 = phenyl; 19, 39, 45: $Ar^1 = Ar^2 = 9$ -phenanthrenyl; 20, 40: $Ar^1 = 9$ -phenanthrenyl, $Ar^2 = 9$ -anthracenyl.

These ¹H NMR spectral characteristics correspond to a 2-pyrazoline structure (cf. types **B** and **D** in Scheme 2). The 2-pyrazoline character has also been corroborated by the 13 C NMR spectra of some selected substances (Table 3). A further confirmation of the 2-pyrazoline structure has been provided by their IR spectra measured as KBr discs.

The NH band (Table 1) characteristic for the 2-pyrazoline was observed between 3350 and 3260 cm^{-1} . The C=O band measured at $1593-1631 \text{ cm}^{-1}$ allows to differentiate the two possible 2-pyrazoline structures (types B and D in Scheme 2) since these values indicate that a strong hydrogen bond should exist in the solid state. Moreover, the presence of a non-conjugated carbonyl group as in 2-pyrazoline type D would show an IR band at about 1680 cm^{-1} which was not observed in any of the spectra.

Thus, the cycloaddition of the chalcones 1-20 and diazomethane is regioselective, providing 3-aroyl-4-aryl-2-pyrazolines 21-40 as sole isolable products irrespective of the bulkiness and/or the electronic influence of the two aryl moieties of the starting α , β -unsaturated ketones. Therefore, our previous findings with substituted chalcones [15] are valid for the analogous α , β -unsaturated ketones as well.

Thermal decomposition of both 1-pyrazolines and 2-pyrazolines is a well known denitrogenation reaction and a convenient procedure for the preparation of

cyclopropane derivatives [2, 4, 16-23]. However, the thermal denitrogenation of pyrazolines obtained by the reaction of α , β -unsaturated ketones and diazoalkanes has received less attention [5, 9, 24]. Thermal decomposition of 3-benzoyl-4-phenyl-2-pyrazoline has been shown to afford β -methylchalcone (dypnone) [5]; spiro-1pyrazoline (obtained by the reaction of 2-benzylidene-3-phenyl-l-indanone and diazomethane gave a β -methyl- α , β -unsaturated ketone as well [9]. Previously, we investigated the thermal decomposition of spiro-1-pyrazolines [24] synthesized by the 1,3-dipolar cycloaddition of exocyclic α , β -unsaturated ketones with diazomethane [10-12]. It has been found that, depending on the stereochemistry of the starting spiro-l-pyrazolines, the major product of the thermal decomposition was either a cyclopropane derivative or a β -methyl- α , β -unsaturated ketone [24]. Based on these results, it seemed expedient to investigate the thermal decomposition of the 2-pyrazolines synthesized in our present study.

When 3-aroyl-4-aryl-2-pyrazolines **21, 26, 30, 34, 37, and 39** were heated slightly

	M.p.	Yield	Molecular	$v(C=O)$	v(NH)	
	$(^{\circ}C)$	$(\%)$	formula ^a	$(cm-1)$	$\rm (cm^{-1})$	
21	$177 - 178$	80.0	$C_{20}H_{16}N_2O$	1606	3287	
22	$158 - 159$	57.9	$C_{20}H_{15}BrN_2O$	1601	3263	
23	$243 - 244$	84.2	$C_{25}H_{20}N_{2}O_{2}$	1620	3266	
24	$227 - 228$	74.4	$C_{24}H_{17}BrN_2O$	1621	3285	
25	$175 - 176$	82.7	$C_{18}H_{14}N_2O_2$	1593	3274	
26	$161 - 162$	66.6	$C_{20}H_{16}N_2O$	1622	3268	
27	$137 - 138$	71.8	$C_{20}H_{15}CIN_2O$	1622	3297	
28	$172 - 173$	76.0	$C_{28}H_{20}N_2O$	1620	3328	
29	$150 - 151$	59.8	$C_{23}H_{16}N_2O_3$	1622	3258	
30	$178 - 179$	86.6	$C_{20}H_{16}N_2O$	1631	3263	
31	$220 - 221$	66.5	$C_{21}H_{18}N_2O_2$	1630	3286	
32	$195 - 196$	77.8	$C_{20}H_{15}CIN_2O$	1631	3260	
33	$181 - 182$	73.6	$C_{23}H_{16}N_2O_3$	1622	3280	
34	$230 - 231$	85.7	$C_{24}H_{18}N_2O$	1621	3350	
35	$197 - 198$	72.9	$C_{24}H_{17}CIN_{2}O$	1619	3302	
36	$201 - 202$	90.4	$C_{24}H_{16}Cl_2N_2O$	1610	3278	
37	$212 - 213$	80.0	$C_{32}H_{22}N_2O$	1624	3342	
38	$226 - 227$	79.6	$C_{24}H_{18}N_2O$	1610	3291	
39	$147 - 148$	66.6	$C_{32}H_{22}N_2O$	1621	3318	
40	$250 - 251$	75.5	$C_{32}H_{22}N_2O$	1624	3341	
41	$80 - 81$	62.3	$C_{20}H_{16}O$	1660		
42	$74 - 75$	69.4	$C_{20}H_{16}O$	1657		
43	$112 - 113$	70.8	$C_{20}H_{16}O$	1652		
44	$124 - 125$	63.7	$C_{24}H_{18}O$	1652		
45	$185 - 186$	59.3	$C_{32}H_{22}O$	1658		
46	$78 - 79$	57.4	$C_{32}H_{22}O$	1652		

Table 1. Physical constants and IR data of compounds **21-46**

 $^{\circ}$ Elemental analyses (C, H, N) were in good agreement with calculated values

above their melting points, compounds **41-46** could be prepared (cf. Scheme 1 and Tables 1 and 2) as the major products of the thermal denitrogenation. The characteristic singlet signal between 2.60 and 2.82 ppm $(=C-CH_3)$ and the singlet at approx. 7.07-7.36 ppm (=CH-) unequivocally prove the β -methyl- α , β -unsaturated ketone structure of substances **41-46.** The conjugated enone character has also been corroborated by the $v(C=O)$ band at about 1652-1660 cm⁻¹. Thus, the major product of the thermal decomposition of these 2-pyrazolines is a β -methyl- α , β unsaturated ketone accompanied by some non-isolable minor components detected by TLC.

	Solvent	δ (ppm)			
21	A	3.66 (dd, 1H), 4.19 (t, 1H), 5.40 (dd, 1H), 6.52 (s, NH), 7.21 -8.22 (m, 12 arom. H)			
22	A	3.81 (dd, 1H), 4.21 (t, 1H), 4.80 (dd, 1H), 6.54 (s, NH), 7.23–8.29 $(m, 11$ arom. $H)$			
23	B	3.79 (s, 3H), 3.84 (t, 1H), 4.40 (dd, 1H), 6.21 (dd, 1H), 6.91–9.39 $(m, 13$ arom. $H)$			
24	B	3.91 (t, 1H), 4.49 (dd, 1H), 6.22 (dd, 1H), 7.84–9.76 (m 13 arom. H)			
25	B	3.68 (dd, 1H), 4.13 (t, 1H), 4.72 (dd, 1H), 6.67–9.13 (m, 10 arom. H)			
26	A	3.72 (dd, 1H), 4.07 (t, 1H), 4.70 (dd, 1H), 7.21-8.06 (m, 12 arom. H)			
27	A	3.76 (dd, 1H), 4.12 (t, 1H), 4.69 (dd, 1H), 7.26–8.05 (m, 11 arom. H)			
28	A	4.15 (t, 1H), 4.43 (dd, 1H), 6.31 (dd, 1H), 7.27–8.62 (m, 16 arom. H)			
29	A	3.75 (dd, 1H), 4.03 (t, 1H), 4.71 (dd, 1H), 7.34–8.23 (m, 11 arom. $H + CH$			
30	A	3.78 (dd, 1H), 4.09 (t, 1H), 4.71 (dd, 1H), 7.19–8.75 (m, 12 arom. H)			
31	B	3.58 (dd, 1H), 3.71 (s, 3H), 4.08 (t, 1H), 4.57 (dd, 1H), 6.85-9.02 $(m, 11$ arom. $H)$			
32	A	3.71 (dd, 1H), 4.08 (t, 1H), 4.68 (dd, 1H), 7.18–8.77 (m, 11 arom. H)			
33	A	3.77 (dd, 1H), 4.03 (t, 1H), 4.76 (dd, 1H), 6.72 (s, NH), 7.36–8.83 $(m, 11$ arom. $H + CH$)			
34	B	3.63 (dd, 1H), 4.12 (t, 1H), 4.64 (dd, 1H), 7.24-9.16 (m, 14 arom. H)			
35	A	3.71 (dd, 1H), 4.09 (t, 1H), 4.69 (dd, 1H), 6.56 (s, NH), 7.31-9.61 $(m, 13$ arom. $H)$			
36	A	3.62 (dd, 1H), 4.17 (t, 1H), 5.12 (dd, 1H), 6.58 (s, NH), 7.03-9.70 $(m, 12$ arom. $H)$			
37	B	3.98 (t, 1H), 4.53 (dd, 1H), 6.34 (dd, 1H), 7.42–9.71 (m, 18 arom. H)			
38	B	3.69 (dd, 1H), 4.20 (t, 1H), 4.68 (dd, 1H), 7.30–9.16 (m, 14 arom. H)			
39	A	3.58 (dd, 1H), 4.08 (t, 1H), 5.39 (dd, 1H), 6.62 (s, NH), 7.46-8.77 $(m, 18$ arom. $H)$			
40	B	4.02 (t, 1H), 4.56 (dd, 1H), 6.37 (dd, 1H), 7.40-9.73 (m, 18 arom. H)			
41	A	2.69 (s, 3H), 7.06 (s, 1H), 7.36–8.02 (m, 12 arom. H)			
42	A	2.68 (s, 3H), 7.07 (s, 1H), 7.39–8.56 (m, 12 arom. H)			
43	A	2.62 (s, 3H), 7.31 (s, 1H), 7.40–8.51 (m, 12 arom. H)			
44	Α	2.70 (s, 3H), 7.35 (s, 1H), 7.43–8.76 (m, 14 arom. H)			
45	A	2.60 (s, 3H), 7.25 (s, 1H), 7.38–9.12 (m, 18 arom. H)			
46	A	2.82 (s, 3H), 7.12 (s, 1H), 7.30–8.76 (m, 18 arom. H)			

Table 2. 1H NMR spectroscopic data of compounds **21 46**

	Solvent	δ (ppm)					
		$C = O$	$C-3$	$C-4$	$C-5$		
22	B	184.0	148.7	47.3	57.7		
23	B	184.0	149.3	42.6	55.3		
24	B	184.4	148.7	42.1	55.7		
26	B	189.6	150.4	46.5	58.4		
27	B	189.5	149.9	45.9	58.2		
35	B	185.7	149.4	46.9	57.5		
36	B	185.5	147.6	44.3	56.3		
40	B	185.1	149.8	41.2	56.3		

Table 3. Selected ¹³ C NMR spectroscopic data of 3-aroyl-4-aryl-2-pyrazolines^a

 13^2 NMR signals of all aromatic carbon atoms have been observed but have not been assigned to the particular atom

Experimental

¹H and ¹³C NMR spectra were recorded on a Bruker WP 200 SY spectrometer at 200/50 MHz in CDCl₃ (A) or in *DMSO-d₆* (B) (internal standard *TMS,* δ = 0.0 ppm) at room temperature. The IR spectra (KBr discs) were measured with a Perkin-Elmer 16 PC instrument. TLC was performed on Kieselgel 60 F₂₅₄ (Merck) using hexane:acetone (7:3 v/v) or toluene:ethyl acetate (4:1 v/v) as eluents. Starting materials 1-20 were synthesized by the alkaline-catalyzed condensation of the appropriate aromatic aldehydes and aryl methyl ketones according to known procedures [25-27].

General procedure for the synthesis of 2-pyrazolines (21-40)

The appropriate α , β -unsaturated ketone (1-20; 5 mmol) and diazomethane (10 mmol) were dissolved in a 1:1 v/v mixture of anhydrous CH₂Cl₂ and diethyl ether (100 ml). The solution was left to stand in refrigerator for 48 h; then the solvent was evaporated *in vacuo* and the residue was crystallized from methanol to afford compounds 21-40 (Scheme 1 and Tables 1-3).

General procedure for the preparation of β *-methyl-* α *,* β *-unsaturated ketones* (41-46)

3-Aroyl-4-aryl-2-pyrazolines 21, 26, 30, 34, 37, and 39 (1.0 mmol) were heated slightly above their melting points *(ca.* 20 °C) for 30 min and the disappearance of the starting material was monitored by TLC. The purification of the crude reaction products was performed by column chromatography on a silica gel (Merck) column using hexane:acetone (7.3 v/v) as eluent to afford compounds 41-46 (Scheme 1 and Tables 1 and 2).

References

- [1] v Auwers K, Cauer F (1929) Ann 470:284
- [2] v Auwers K, König F (1932) Ann 496: 252
- [3] Siegel S, Bergstrom CG (1950) J Am Chem Soc 72:3815
- [4] Abdel-Rahman MO, Aboul-Enein MN, Tadros WM (1969) J Chem U.A.R. 12:69
- [5] Smith LI, Pings WB (1937) J Org Chem 2:23
- [6] Ghate SG, Kaushal R, Deshapande SS (1950) J Indian Chem Soc 27:633
- [7] Sayed GH, Kjosen H (1980) Indian J Chem 19B: 980
- [8] Aleksandrova IA, Dorofeeva NA, Chernova AV, Khairullin VK (1978) Zh Org Khim 14:1974
- [9] Mustafa A, Hilmy AK (1951) J Chem Soc 3254
- [10] Tóth G, Szöllösy Á, Lévai A, Kotovych G (1986) J Chem Soc, Perkin Trans 2: 1895
- [11] Tóth G, Lévai A, Duddeck H (1992) Magn Reson Chem 30: 235
- [12] Tóth G, Lévai A, Szöllösy Á, Duddeck H (1993) Tetrahedron 49:863
- [13] Kamecki J, Perka W, Pijewska J (1985) Polish J Chem 59:285
- [14~] Pijewska J, Kamecki J, Perka-Karolczak W (1993) Pharmazie 48:254
- [15] Tökés AL, Szöllösy Á, Tóth G, Lévai A (1983) Acta Chim Hung 112: 335
- [16] Jones WM (1959) J Am Chem Soc 81: 5153
- [17] Overberger CG, Anselme J-P (1962) J Am Chem Soc 84:869
- [18] Van Auken TV, Rinehart Jr KL (1962) J Am Chem Soc 84:3736
- [19] Jones WM, Tai W-T (1962) J Org Chem 27:1324
- [20] Overberger CG, Anselme J-P (1964) J Am Chem Soc 86:658
- [21] Crawford RJ, Mishra A (1966) J Am Chem Soc 88:3963
- [22] Danion-Baugot R, Carrié R (1969) Bull Soc Chim Fr 313
- [23] Kennedy GD, Baumstark AL, Dotrong M, Thomas T, Narayan N (1991) J Heterocycl Chem 28:1773
- [24] Tóth G, Lévai A, Dinya Z, Snatzke G (1991) Tetrahedron 47: 8119
- [25] Wiley RH, Jarboe CH, Hayes FN, Hansburg F, Nielsen JT, Callahan PX, Sellars MC (1958) J Org Chem 23:732
- [26] Lévai A (1979) Pharmazie 34: 439
- [27] Lévai A (1981) Pharmazie 36: 449

Received May 8, 1995. Accepted May I2, 1995